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An accumulation of expressed sequence tag (EST) data in the public domain and the availability of bioinformatic
programs have made EST gene expression profiling a common practice. However, the utility and validity of
using EST databases (e.g., dbEST) has been criticized, particularly for quantitative assessment of gene expres-
sion. Problems with EST sequencing errors, library construction, EST annotation, and multiple paralogs make
generation of specific and sensitive qualitative and quantitative expression profiles a concern. In addition, most
EST-derived expression data exists in previously assembled databases. The Virtual Northern Blot (VNB) (http:
//tlab.bu.edu/vnb.html) allows generation, evaluation, and optimization of expression profiles in real time, which
is especially important for alternatively spliced, novel, or poorly characterized genes. Representative gene fami-
lies with variable nucleotide sequence identity, tissue specificity, and levels of expression (bcl-xl, aldoA, and
cyp2d9) are used to assess the quality of VNB’s output. The profiles generated by VNB are more sensitive and
specific than those constructed with ESTs listed in preindexed databases at UCSC and NCBI. Moreover, quanti-
tative expression profiles produced by VNB are comparable to quantization obtained from Northern blots and
qPCR. The VNB pipeline generates real-time gene expression profiles for single-gene queries that are both
qualitatively and quantitatively reliable.
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INTRODUCTION ing technologies (63). Moreover, there exists a vast
array of primary experimental data in the public do-
main in the form of microarray data, SAGE, and theGene expression analysis, pathway profiling, gene

regulatory networks, and modeling of biological pro- expressed sequence tags database (dbEST), which
can be freely used by investigators for gene expres-cesses are key for “post-genome project” studies.

Various high-throughput methods of expression pro- sion profiling. Many public microarray databases
now provide tools to survey individual gene expres-filing are commonly employed, such as microarrays,

serial analysis of gene expression (SAGE), and quan- sion among normal and disease tissues. These in-
clude, but are not limited to, Stanford Microarray Da-titative reverse transcription PCR (qPCR); some be-

ing more costly and labor intensive than other meth- tabase (SMD), Gene Expression Omnibus (GEO),
Oncomine, Genesapiens, and Gene Expression Atlasods (4). Newer expression profiling technologies

include genome-scale in situ hybridization databases (8,16,32,53,61). A new tool, called the Virtual North-
ern Blot (VNB), is described herein that maximizes(38) (e.g., www.eurexpress.org) and fully sequenced

EST libraries using massively parallel DNA sequenc- the usefulness of dbEST as a resource in a unique
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fashion for effective gene expression profiling in real used sources for retrieving gene expression data.
However, while these tools have enabled the wide-time, something not available in any of these other

tools and databases. spread use of EST data, the assembly of these data-
bases is prone to errors from significant sequence er-ESTs are single-pass sequenced cDNAs represent-

ing expressed genes from a specific cell population ror rates, alternative splicing, and lack of genome
coverage (11,51). All these issues are especially criti-or tissue (2). They are on average 200–700 nucleo-

tides (nt) derived from partial sequencing of ran- cal for novel genes and those with very high sequence
similarity. In addition, compiling expression profilesdomly primed or oligo-dT primed cDNA clones from

libraries of different tissues. Some libraries have been from a gene cluster may prove quantitatively inaccu-
rate due to various cDNA construction methods em-manipulated (sometimes called normalization) such

that rare transcripts might be more highly repre- ployed (27). Furthermore, such processed data is by
its nature not current and pipelines for generatingsented, while other libraries have not been manipu-

lated and thus the proportion of particular cDNA gene expression profiles in real time are not readily
available. For those investigators wanting precise,clones should accurately represent the same propor-

tion in the mRNA population in that tissue. sensitive, and up-to-date gene expression data for a
single gene or gene family, there are few tools avail-The dbEST is a public domain archival database

of cDNA sequence files (10). Since its inception in able for accessing dbEST. In addition, the use of any
of these tools for quantitative analysis has not been1994, dbEST has grown exponentially and this

growth is expected to continue. Although a powerful clearly demonstrated. VNB was specifically designed
to address these needs.resource for sequence analysis, and especially for

identification of novel genes (42), the utility and va- VNB is an application that can generate accurate
quantitative and qualitative expression patterns forlidity of dbEST for quantitative expression profiling

have been criticized. Such criticism stemmed from any human or mouse gene, which is available via a
web interface (http://tlab.bu.edu/vnb.html). The algo-early high error rates in sequence determination

(>3%), poor annotation, partial sequence reads, and rithm is analogous to a classical Northern blot; the
program is optimized for single-gene queries for dif-large-scale contaminations (3,21,39,52). Despite these

issues, numerous EST mining algorithms (31,42) ficult genes (e.g., genes with high sequence identity
among paralogs or novel and poorly characterizedhave successfully taken advantage of this tremendous

resource (>61 million sequences by May 2009). In genes). Validation of VNB, using gene families of
varying sequence similarity, function, and expressionaddition, methods for systematic validation (60) have

shown that some of the early concerns are less prob- profiles, demonstrates that this tool is more sensitive
and specific than commonly employed algorithms.lematic as older ESTs have been diluted with higher

quality data and better annotation. Expression profil- More importantly, quantitative gene expression infor-
mation derived using VNB is validated by Northerning using dbEST is a common method for exploring

the transcriptome (11,51), characterizing novel gene blots and qPCR.
expression (7), and identifying novel pathways in tis-
sues (20). The easy availability of these data has fos-
tered continued improvement and innovation (34,43, MATERIALS AND METHODS
69) that underscores the value of this resource.

Overview of the VNB Algorithm
Gleaning reliable expression information from the

archival dbEST database begins with proper identifi- The VNB algorithm is outlined in the flowchart
shown in Figure 1. The algorithm is analogous to per-cation of ESTs derived from the gene(s) of interest,

often by sequence alignment. Common sequence forming a Northern blot; first gene-specific “probe”
sequences are identified for subsequent in silico “hy-alignment tools (MegaBLAST, BLAT, d2, CAP3,

PHRAP) (14,18,28,30,65,70) have been used to clus- bridization” against EST libraries of mRNA-derived
sequences. The most important part of the algorithm,ter ESTs and then assign each cluster to a gene, thus

building a gene-indexed database from which expres- like in a Northern blot, is selecting the gene-specific
probe(s). Using a multiple alignment of the gene ofsion profiles could be gleaned. This processed data is

made available through web-based tools, or pipelines. interest to its paralogs (generated by one of two
methods, see below), a routine called AutoProbeTwo of the most frequently accessed EST analysis

pipelines used to display gene-associated EST infor- finds sequence intervals, or probes, that are specific
to the gene of interest. These probes can be furthermation are the Genome Browser at UCSC (29),

which uses BLAT, and UniGene (41) at NCBI, which verified by ProbeChecker. Using gene-specific
probes generated from AutoProbe and ProbeChecker,uses MegaBLAST. These pipelines are easily ac-

cessed and UniGene is among the most commonly dbEST is searched using BLAST (5) for ESTs that
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for each tissue. Another profile, called the quantita-
tive profile, is generated by counting only those ESTs
that are annotated as “nonnormalized” by CGAP.
Moreover, the quantitative level of expression is cal-
culated as a percentage of the total number of ESTs
from “nonnormalized” libraries for each tissue. A de-
piction of the user interface and a sample output are
shown in Figure 2.

The accurate annotation of library information at
CGAP is critical to the accuracy of expression pro-
files generated by VNB. The CGAP site allows for
the retrieval of tissue or cell origin, cDNA library
construction information, normal or cancerous tissue
types, and the number of ESTs in each library (http:
//cgap.nci.nih.gov/Tissues/LibraryFinder). Currently,
CGAP only catalogs ESTs libraries from human and
mouse. Both qualitative and quantitative profiles from
VNB use the tissues annotated on the CGAP website.
A more detailed description of the methodology used
by the software can be found in Supplementary Mate-
rials (available at http://www.bu.edu/aldolase/lab/soft
ware.html).

Multiple Alignment

In order to generate a set of gene-specific probes,
AutoProbe needs an alignment of the input gene to
all of its paralogs. The user has the option of auto-
matically generating an alignment by using BLAST
to query the RefSeq database (http://www.ncbi.nlm.
nih.gov/RefSeq/) (48) with the gene of interest, or
directly uploading a custom alignment generated with
ClustalW (http://www.ebi.ac.uk/clustalw/) (62). This
second option allows the user to define the set of par-
alogs or alternatively spliced transcripts. This “cus-
tom” ClustalW alignment is useful for profiling novel
or poorly characterized genes, which do not have
some (or any) of their paralogs in the RefSeq data-
base.

AutoProbe and ProbeCheckerFigure 1. An Overview of VNB algorithm presented as a flow
chart. A box represents either input data or a result. An oval repre- Autoprobe uses the multiple alignment of the inputsents an action. A diamond represents a decision point. A more

gene to its paralogs, generated by either of the twoinformative description of the VNB algorithm is provided in Sup-
plemental Materials. methods described above, to find gene-specific se-

quence intervals. AutoProbe generates multiple small
and overlapping ‘probes” that span the length of the
mRNA. The overlapping probes help circumvent is-exactly match at least one of the probes. Each EST

is mapped to an EST library by using annotation from sues with sequencing errors, regions of high similar-
ity in paralogs and/or alternative splicing. By over-Entrez (9). The library identifiers are then used to

search library construction information in the Cancer lapping, while one probe may not “hybridize” 100%
to one EST, another probe would hybridize by slidingGenome Anatomy Project (CGAP) database (35).

The construction information is then used to generate past the error, include or exclude an alternative
spliced region, and/or include a sequence more spe-a qualitative and a quantitative expression profile for

the query gene. A qualitative profile is generated by cific to the gene of interest and not a closely matched
paralog. AutoProbe breaks the input sequence up intocounting all ESTs that match the gene-specific probes
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Figure 2. Illustration of the VNB user interface and output file. (A) The user interface for VNB at http://tlab.bu.edu/vnb.html. The “Set your
input” section allows for the two different ways of inputting the query. The “Select your parameters” section allows the user to select the
organism, normal/cancer tissues, activation of ProbeChecker, window size, and probe length. (B) A typical output for VNB using mouse
aldolase B as an example, which is expressed predominantly in the liver and kidney. At the top (in purple), is the tissue expression profile
grouped by total ESTs found and at the bottom (in red) is the quantitative tissue expression profile that uses only unmanipulated libraries
as defined at CGAP. The numbers in parentheses are the absolute expression values obtained by dividing the number of ESTs found in each
tissue by the total number of ESTs from that tissue. The errors are calculated to one standard deviation using a Poisson distribution. (C) A
graphical representation of the information derived from (B). The qualitative profile, using all ESTs found, shows the top 10 tissues as a
function of the number of ESTs. The absolute quantitative profile, using ESTs from nonnormalized libraries, shows the top tissues as a
function of level of expression (fraction of total mRNAs).
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short regions, called windows, and selects the most
gene-specific probe from each window, using a dis-
similarity matrix compiled from the multiple sequence
alignment. Such a matrix and the calculation are ex-
emplified in Figure 3. The two parameters of probe
length and window size can be adjusted by the user to
improve the profile for specificity and/or sensitivity.
Finally, a routine called ProbeChecker ensures speci-
ficity of the profiles by discarding probes that exactly
match sequences to any of the paralogs in the align-
ment.

BackBLAST

A program called BackBLAST was used to deter-
mine whether a set of ESTs was truly derived from
the gene of interest. This program queries each EST
against the RefSeq database. As outlined in Figure 4,

Figure 4. Flow chart for BackBLAST routine. Flowchart and deci-
the ESTs whose best match in RefSeq is the input sion matrix for BackBLAST algorithm is depicted. BackBLAST was

used to confirm that ESTs were derived from the gene of interestgene are considered true positives, while the others
(TPs). Formats are as described in Figure 1. BackBLAST programare considered false positives. However, because
can sort through all the EST hits and determine if they represent

BackBLAST must query each EST against the Ref- the query or are false positives. It requires the list of EST accession
numbers along with knowledge of which accession numbers in Re-Seq database, its runtime is prohibitively large. Thus,
fSeq correspond to the gene of interest.it was only used for validation purposes and is not

part of the implementation available online.

Figure 3. Illustration of the scoring matrix for AutoProbe. At the top is an example of a BLAST alignment where the matches to the top
query sequence (reference cDNA) are denoted by dots, base changes noted by letters, and gaps noted as spaces for three paralogous
sequences given below the reference cDNA. The alignment is converted into a matrix of position scores that assigns values for the number
of matches, mismatches, and gaps in the multiple alignment. The cDNA sequence from a gene of interest is compared to its paralogs
systematically, by dividing the gene into multiple segments called “windows.” Every possible probe within each window along the cDNA
(5′ to 3′) is assessed for specificity by calculating a probe score that reflected its uniqueness relative to the paralogs. Below the alignment
is the scoring system for AutoProbe with the sum of the scores at each position (“Sum of Position Scores”). The “Probe Score” is the total
of all “Sum of Position Scores” for a probe that starts at that position and continues to the right for a definable probe size (15 bases shown
here in shaded rectangle for the query sequence located above the matrix). The first “Probe Score” is depicted in the shaded box. The “Probe
Score” changes as the probe window (shaded sequence) slides to the right. The lowest probe score within each window determines which
probe is selected. For probes with the same low score, the first probe is chosen to represent that window. The minimum “Probe Score” in
a definable window (eight bases here) is denoted by the check mark. The most gene-specific probes have the lowest scores. The selected
probes for the first two windows are shown at the bottom, both of which correspond to the regions with the highest specificity to the
reference cDNA sequence.
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Runtime and Resources Used formed at 65°C in 0.5× SSC, 0.5% SDS. A phosphor-
imager was used for quantitative tabulation of the

The bulk of VNB’s runtime is spent on querying
hybridization results. The mRNA from aldoA and

dbEST with the set of gene-specific probes. When the
gapdh coelectrophoresed in these blots and the same

number and length of the probes increase (by using a
blots were used for each probe after washing and

longer input sequence, smaller window size, or
checking that signals were at background before re-

greater probe length), the runtime, which is typically
hybridization.

3–30 min, increases considerably. VNB is com-
pletely automated and it interfaces with all of the

Quantitative RT-PCR (qPCR)
tools/resources that it uses online (there is nothing
installed locally) (see Supplementary Materials at Total RNA from eight mouse tissues (liver, spleen,

skeletal muscle, kidney, brain, testis, lung, and sali-http://www.bu.edu/aldolase/lab/software.html). As a
consequence, VNB uses the latest versions of BLAST, vary gland) was purchased from BD Biosciences-

Clontech (Mouse—Multiple Tissue Total RNA Panel,RefSeq, and dbEST available at NCBI, as well as
the latest Entrez, CGAP annotation, and version of #636644). Fragments from mRNA encoding aldolase

A or GAPDH were amplified from these tissues fol-ClustalW (36).
lowing cDNA synthesis by reverse transcriptase (Su-
perscript II) using oligo-dT priming of RNA (0.14Northern Blots
µg/µl) as described by the manufacturer (Invitrogen).

Blots of total RNA from 14 mouse tissues (brain,
PCR, using the same primers used for Northern blot

heart, lung, liver, spleen, kidney, stomach, small in-
probes described above, was used to confirm cDNA

testine, skeletal muscle, skin, thymus, testis, uterus,
synthesis and the specificity of the PCR reactions.

placenta) were purchased from Seegene, Inc. (#1006-
Real-time PCR was performed in 384-well plates us-

1-1302). Probes for the aldolase A gene (aldoA) (387
ing an ABI 7300 instrument and PCR cocktail con-

bp from 3′-untranslated region) and the glyceralde-
taining SYBR green from ABI according to the man-

hyde-3-phosphate dehydrogenase gene (gapdh) (357
ufacturer’s procedures. Amplification of four 10-fold

bp from 3′-untranslated region) were generated from
serial dilutions of the cDNA reactions was recorded

PCR amplification of cDNA clones pFL (40) and
by fluorescence changes during the denaturation cy-

EST (IMAGE ID 3513620), respectively. Forward
cles of PCR (15 s at 95°C, 30 s at 55°C, 70 s at 72°C

(aldA_1221) and reverse primers (aldA_1587) for
for 40 cycles). The cycle threshold was recorded and

aldoA were as follows: 5′-CTTGACTTTCTCCTAT
plotted as a function of the dilution to generate a

GGTCG-3′ and 5′-CCCTTAAATAGTTGTTTATTG-
straight line with a slope that was related to the dou-

3′, respectively. Forward and reverse primers for
bling efficiency (10−1/slope). The efficiency raised to the

gapdh were 5′-CTACACTGAGGACATGGTTGTC
value of the intercept of the line at no dilution is a

TCATGTGACTT-3′ and 5′-CAGCGAACTTTATTG
measure of the relative amount of cDNA for each

ATGGTATTCAAGAGAGT-3′, respectively. Radio-
gene in the tissue samples.

labeling was done using a modified version of the
procedure of Feinberg and Vogelstein (19). Briefly, a

Analysis of Published Experimental Data
solution of 100–150 ng of probe DNA was denatured
by boiling for 5 min. Reagents were added and the The experimentally determined expression levels

were taken directly from quoted values in the citedsolution was incubated at 37°C for 2 h. The final con-
centrations in 20 µl were 125 mM HEPES, pH 6.6, reports or measured from relative intensities mea-

sured on a densitometer from zymograms or Northern125 mM Tris-HCl, pH 8, 20 mM β-mercaptoethanol,
12.5 mM MgCl2, 50 mM each of dCTP, dGTP, and blots displayed in the figures.
dTTP, 40 µg/ml BSA, 13.5 A/ml random octomers,
1 unit DNA polymerase I (Klenow fragment), and 60
µCi of [α-32P]dATP (1 mM) (3000 mCi/mmol). The RESULTS
reaction was stopped by fivefold dilution in 10 mM

Testing VNB
Tris-HCl, pH 8, 1 mM EDTA and the labeled DNA
was purified from unincorporated dATP by gel filtra- Choosing a Representative Set of Genes. For

testing the effectiveness of VNB, queries were usedtion with BioGel P-6 DG (58). Specific radioactivity
ranged from 107 to 109 cpm/µg. Prehybridization and that belonged to three conserved superfamilies. The

first, aldolase A, which belongs to a superfamily ofhybridization reactions were at 42°C in 5× SSC, 10×
Denhardts, 20 mM phosphate, pH 7, 7% SDS for 1 aldolases (15), has two closely related isozyme genes.

The closest isozyme, aldolase C, shares 85% overalland 16 h, respectively. Washing of the blot was per-
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sequence identity with the aldoA cDNA (55). Second, 4). This list of true positives was set by definition
as the standard for the comparison of specificity andthe cyp family is represented by cyp2d-9 (steroid 16-

α-hydroxylase gene), which shares many regions of sensitivity. This standard set of TPs was critical for
both the optimization of VNB parameters and thevery high sequence identity with its paralogs (57).

The closest gene family member (cyp2d-13) is 93% comparison of VNB output to those of Genome
Browser at UCSC and UniGene (see below).identical in cDNA sequence. The other paralogs in-

clude cyp2d-3, cyp2b (-9, -10, -13, -19, -21), cyp2c Specificity was defined as TN/(TN + FP), where
true negatives (TN) were the number of ESTs in(-29, -38, -39, -44), cyp2g-1, and cyp2j (-3, -5, -6,

-9, -11, -13). The cyp2 family is expressed at low dbEST that were not derived from the gene of inter-
est; in other words, the bulk of dbEST. False posi-levels and in only limited numbers of tissues (17,24).

Lastly, BCL-xL, an antiapoptotic protein, belongs to tives (FP) were the number of ESTs found by an al-
gorithm that were not derived from the gene ofa large family of proteins involved in apoptosis and

shares a moderate sequence identity among its mem- interest [i.e., all ESTs found that were not in the stan-
dard set of TPs (TP + FN) defined using Back-bers including BCL2-associated athanogene protein

(BAG) and BCL2-associated X protein (BAX). The BLAST]. The dbEST for mouse included 4,334,000
EST sequences at the time of the study.closest family member of the gene family, bcl2, has

46% overall identity to the bcl-xl cDNA (1), but In general, the maximum number of ESTs specific
for each query (aldoA, cyp2d-9, and bcl-xl) was ob-shares as much as 73% identity in their BH domains.

The bcl2 family is ubiquitously expressed at moder- tained with the smaller window and probe sizes (Fig.
5A, C, E, respectively). As expected, this simplyate to low levels (23). These three genes were care-

fully selected to represent a cross section of genes in meant the larger number of smaller probes increased
the chance of finding ESTs in the database (high sen-the genome based on their span in degree of sequence

similarity, expression levels, and tissue distribution. sitivity). For specificity (Fig. 5B, D, F), the number
of false positives increased as the window size de-For sequence similarity, these gene families have

overall sequence identity ranging from 46% to 93%. creased [reflected in a smaller specificity value; TN/
(TN + FP)], but only for probe sizes ≤20. In general,They range from low levels to high levels of expres-

sion, and are expressed in a tissue-specific fashion; increasing specificity correlated with increasing probe
length, while increasing sensitivity was associatedfor example, cyp2d has a limited tissue distribution

(17,24), whereas bcl-xl and aldoA are expressed ubiq- with decreasing probe length. Remarkably, the small-
est probe and window size that yielded the highestuitously.
specificity, while retaining maximal sensitivity, was
the same for all three gene families: a probe lengthParameter Optimization. As discussed above,

small window sizes generate larger numbers of of 20 nt and a window size of 8 nt.
probes and lengthen the run time of the program. Us-
ing smaller window sizes, sensitivity would increase VNB Versus Other EST Collections. The sensi-

tivity and specificity of all “gene-specific” ESTs de-and specificity would decrease. On the other hand,
larger window sizes limit the number of probes, rived from VNB, UniGene (41) at NCBI, and the Ge-

nome Browser at UCSC (29) were compared. For thespeeding up the program, and increasing specificity
while curtailing sensitivity. To test this, window sizes purpose of this comparison, the TP + FN set was

used (defined by BackBLAST, described above). Each(8–24 nucleotides) and probe sizes (16–30 nucleo-
tides) were tested using the mouse dbEST database of the three EST collections was then evaluated for

sensitivity and specificity toward a member of eachand cDNAs from the three members of each super-
family described above. of the gene families, aldo, cyp, and bcl-2 (Fig. 6).

The optimal window size and probe size (8 and 20)Sensitivity was defined as TP/(TP + FN), where
true positives (TP) were the total ESTs found that were used for generating the ESTs from VNB. In

terms of sensitivity, VNB was superior to the otherwere derived from the gene of interest, and false neg-
atives (FN) were the number of ESTs that the algo- methods for aldoA and bcl-xL with virtually all ESTs

identified by VNB (Fig. 6A). For example, 98.7% ofrithm should have found. The sum (TP + FN) com-
prised the set of “true” entries in dbEST, which was all ESTs were identified for aldoA and bcl-xL using

VNB compared to an average of 87.2% of the ESTsgenerated by first combining the currently available
lists of ESTs for each gene from UniGene, the UCSC for UniGene and UCSC Genome Browser. For

cyp2d-9, the sensitivity was relatively low regardlessGenome Browser, and VNB. This combined list then
was separated into true positives (TPs) and false posi- of the method, with UniGene being slightly more

sensitive than the other methods. The high degree oftives (FPs) by use of the BackBLAST algorithm (Fig.
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Figure 5. Sensitivity and specificity assessments for window size and probe size for expression of mouse aldoA, cyp2d-9, and bcl-xL.
Sensitivity [TP/(TP + FN)] was plotted for these three genes as indicated for each of (A), (C), and (E) according to probe length using
window sizes 8 (filled circles), 12 (open circles), 16 (filled squares), 20 (open squares), and 24 (Xs) nt for mouse aldoA (A), cyp2d-9 (C), and
bcl-xL (E). Queries for mouse genes were: aldoA [GenBank:NM007438], cyp2d-9 [GenBank:NM01006], and bcl-xL [GenBank:NM009743].
Specificity [TN/(TN + FP)] was plotted for these three genes as indicated for each of (B), (D), and (F) according to probe length using
window sizes from 8 to 24 nt for aldoA (B), cyp2d-9 (D), and bcl-xL (F). A drop in specificity of 0.00001 corresponded to approximately
50 false-positive ESTs. In brief, TP is defined as an EST hit in dbEST derived from the gene of interest; FN is defined as a gene-specific
EST not identified by the algorithm; FP is an EST hit derived from another gene; TN is an EST hit obtained by the algorithm that was not
gene specific. Further details can be found in the text.
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Figure 6. Sensitivity and specificity of gene indexed EST databases (UniGene and UCSC Genome Browser) compared to VNB algorithm.
(A) Sensitivity [TP/(TP + FN)] values were plotted with the results from VNB (using optimal parameters of probes size = 20 nt and window
size = 8 nt) (solid), UCSC Genome Server (gray), and UniGene (unfilled) using the queries for mouse aldoA [GenBank:NM007438], cyp2d-
9 [GenBank:NM010006], and bcl-xL [GenBank:NM009743]. (B) Specificity [TN/(TN + FP)] plotted as in (A).

similarity among the cyp family members was likely found in skeletal muscle, both skeletal and smooth-
muscle isoforms are found in the heart (25). More-responsible for this low sensitivity, with no method

able to identify all the ESTs determined for cyp2d-9. over, determination of the relative amounts of each
isoform in tissues where more than one form is pres-This was interesting and indicated that each program

can identify cyp2d-9 ESTs that the others cannot. ent represents a semiquantitative analysis. This kind
of analysis was performed using VNB for mouseThe three collections were compared for specificity

(Fig. 6B). This parameter, which reflects the false- skeletal and smooth-muscle α-actin. The numbers of
skeletal and smooth-muscle α-actin ESTs were nor-positive rate, is often more important than sensitivity

for many expression-profiling purposes where false malized to the total number of α-actin ESTs in each
tissue and compared with published experimental val-positives can be critically misleading. Here VNB was

as effective, or more effective, than either UniGene ues (25) (Fig. 7A). The VNB-determined expression
profile for actin easily reflected the experimental ex-or the UCSC Genome Browser for all three gene

families. For example, for cyp2d-9, the difference in pression pattern. There was no smooth-muscle α-actin
expression identified in skeletal muscle, while inspecificity between results from VNB and UCSC Ge-

nome Browser corresponded to six more FP in the heart both the skeletal and heart isoforms were found
at the same ratios as the experimental pattern.UCSC list; and the difference for bcl-xL was over 50

FP. In summary, VNB was the most specific program This analysis was expanded to the family of the
aldolase isozymes. Each aldolase isozyme is selec-for all three genes, and it was more sensitive than

UniGene or UCSC Genome Browser for all but tively expressed in different tissues; aldolase A in the
muscle, aldolase B in the liver, and aldolase C in thecyp2d-9.
brain (46). To determine whether VNB recapitulated
these experimental results, the expression profile of

Biological Validation: VNB Versus Experimental
the mouse aldolase isozymes (A, B, and C) was de-

Measurements of Gene Expression
termined for each isozyme in several well-character-
ized tissues: muscle, heart, adult brain, fetal brain,Qualitative and quantitative expression profiles

were constructed for aldoA, actin, and gapdh using liver, and kidney. The positive ESTs for each iso-
zyme were tallied and normalized to the total aldolaseVNB with a window size of 8 and a probe size of 20.

The qualitative profiles were compared to literature ESTs in each tissue (Fig. 7B). The VNB pattern re-
flected the published experimentally determined ex-values. The quantitative profiles were compared to

two different experimental assays. pression pattern (37) with the exception of muscle
where VNB data suggest that a minor amount of al-
dolases B and C was expressed. Similar results wereQualitative Comparison. The expression of dif-

ferent isoforms in specific tissues represents a valid obtained for actin using data from UniGene except
that false positives for smooth-muscle actin weretest of qualitative expression. For example, α-actin

has two isoforms; while only the skeletal form is identified in skeletal muscle and slightly higher than
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Figure 7. Validity of qualitative expression profiles from VNB. (A) VNB-generated expression (solid bar) of genes for mouse skeletal α-
actin (acta1) (S) and smooth-muscle (aorta) α-actin (acta2) (Ar) in skeletal muscle and heart plotted as a percentage of the total for each
isoform in a tissue. This was plotted similarly to experimentally determined expression (cross-hatched bars) of α-actin from the same tissues
(25), which was quantified as described in Materials and Methods. (B) VNB-generated expression (solid) for mouse aldoA, aldoB, and
aldoC denoted by letters. The number of ESTs for each aldolase found in muscle, heart, adult brain, fetal brain, liver, and kidney were
normalized to the total aldolase ESTs in each tissue. The VNB-generated profiles used default probe size (20) and window size (8). The
experimentally determined expression (cross-hatched bars) of the aldolase isozymes was estimated from data in Lebherz and Rutter (37).
Queries for mouse genes were: acta1 [GenBank:NM009606], acta2 [GenBank:NM007392], aldoA [GenBank:NM007438], aldoB [GenBank:
NM144903], and aldoC [GenBank:NM009657].

experimental values for smooth-muscle were identi- was underestimated in most cases when manipulated
libraries were used (Fig. 8, gray bars). This likelyfied in heart. In addition, UniGene failed to detect the

experimentally determined low levels of aldolase C reflects the removal of many of the redundant aldoA
cDNAs in these manipulated libraries. However,in heart, as well as the VNB-determined low levels

in skeletal muscle and kidney (data shown in Supple- there were four “tissues” (liver, embryonic tissues,
head & neck, and eye) where expression levels werementary Materials at http://www.bu.edu/aldolase/lab/

software.html). comparable, and three “tissues” (pancreas, bone mar-
row, and thyroid) that had significantly higher (<30%
difference) levels in the unmanipulated libraries. InQuantitative Comparison. The qualitative/semi-

quantitative VNB data shown in Figure 7 matched both cases, this may be due to ESTs that were from
predominantly “nonnormalized” libraries and/or frompublished experimental data and prompted a direct

test of whether VNB could quantitatively determine libraries in which the manipulation was not effective.
In summary, the ability of VNB to use the librarygene expression (e.g., express as a percentage of all

transcripts in a cell/tissue). First, the effect of exclud- annotation information at CGAP and distinguish ex-
pression profiles derived from nonnormalized or nor-ing transcript-altered libraries was assessed. Expres-

sion profiles exclusively from unmanipulated librar- malized libraries indicated the potential for quantita-
tive gene expression profiles from dbEST.ies and exclusively from manipulated libraries were

compared. Expression profiles for aldoA from un- Most quantitative gene expression assays are not
absolute (e.g., five transcripts per cell or �0.005%),manipulated libraries (defined in CGAP as “nonnor-

malized”) and from manipulated libraries (defined but generally are calculated relative to an assumed
invariant endogenous control. Typically, ubiquitoushere as all libraries minus nonnormalized libraries)

were compared (Fig. 8) using library information “housekeeping” genes such as those for GAPDH or a
ribosomal protein are used for reference. To comparefrom 27 tissues extracted from the CGAP database

(35). Absolute expression levels (as opposed to rela- VNB’s quantitative profiles with such experimental
approaches, the ratio of aldoA to gapdh expressiontive expression levels) of mouse aldoA for each tissue

were calculated by VNB by dividing the number of was calculated using only “quantitative” mouse li-
braries (defined in CGAP as “nonnormalized”). Ex-aldoA ESTs by the total number of ESTs from librar-

ies of each category. For most tissues, there were perimental determination of the expression levels of
mouse aldoA and gapdh were then determined usingclear differences in aldoA expression levels derived

from unmanipulated libraries versus those that had Northern blots and qPCR methods. The three meth-
ods were compared as shown in Figure 9. Of thebeen manipulated. The expression level for aldoA
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Figure 8. Comparison of libraries in dbEST for quantitative expression levels. VNB-generated expression profiles for mouse aldolase A
from nonnormalized/unmanipulated (quantitative) libraries (solid bars), and from normalized/manipulated (qualitative) libraries (gray bars),
are plotted for 27 tissues. Details are available in Materials and Methods. In brief, absolute expression levels (#EST hits for aldolase A/
#ESTs in libraries from that tissue) were from values gleaned from CGAP (35) using EST library IDs as described in the text. Tissues with
(*) denote those for which expression levels were either comparable or normalization resulted in higher aldoA expression.

Figure 9. Demonstration of quantitative capacity of VNB. VNB-generated expression profiles for mouse aldoA and gapdh [GenBank:
NM008084] were compiled using optimal parameters and quantitative libraries as described in Figure 6 and the ratio plotted (black bars).
Ratio of aldoA/gapdh EST hits for liver, kidney, brain, spleen, and testis were 10:94, 58:92, 193:230, 6:9, and 7:3, respectively. Errors were
calculated assuming a binomial distribution (p = 0.05). Data from Northern blots (cross-hatched bars) and qPCR (white bars) were determined
from replicates of the same tissues as described in Materials and Methods.
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seven tissues common to all three experimental tech- negatives in each cluster. One of the major problems
causing inaccurate assembly is the high sequence er-niques (liver, kidney, brain, spleen, testis, skeletal

muscle, and lung), skeletal muscle and lung tissues ror rate. Although not as significant as in early ESTs,
these cDNAs remain in the archival database andcould not be compared because the ESTs found were

not from quantitative libraries. The ratio of aldoA/ they are still being generated (47). VNB minimizes
inaccuracies in the produced profile by requiring ex-gapdh EST hits in quantitative libraries for liver, kid-

ney, brain, spleen, and testis were 10:94, 58:92, 193: act matches between the selected probes and the
ESTs (reducing false positives), while using many230, 6:9, and 7:3, respectively. Notably, for both

spleen and testis, quantitative EST libraries were overlapping probes along the entire input sequence
(reducing false negatives). The effectiveness of over-small, containing few ESTs, so the calculated errors

were relatively large. Each of the three techniques, lapping probes is exemplified by loss of sensitivity
(increasing number of false negatives) when probeVNB and the two experimental methods, reflected the

same relative expression levels within experimental length decreases relative to window size (see Fig. 5).
Another advantage of VNB is the ability to useerror and validated the value of both VNB (using the

annotation from CGAP) and dbEST for quantitative a custom alignment generated by ClustalW from a
manually selected set of paralogs. An alignment gen-gene expression profiling.
erated using the RefSeq database may not include a
complete set of known paralogs. Many alternatively
spliced, poorly characterized, or novel mRNAs areDISCUSSION
not found in RefSeq. When many of the paralogs are

Advantages of VNB
not present in RefSeq, the known paralogs can be
aligned manually with ClustalW. This ClustalWCharacterizing transcriptomes using EST libraries

is well established (6,12,43,44,54,56). Web-based alignment can then be used as input to VNB to gener-
ate a better profile. The ability to input a customEST analysis tools (pipelines), such as UniGene,

CGAP, TIGR indexes, Bodymap, ECgene, Tissue- alignment was critical to generating VNB-derived
gene expression profiles for triose kinase, which wasInfo, ASePCR, and STACK (33–35,47,49,50,59,66),

have made EST expression profiling simple and not available in UniGene or RefSeq at the time (20).
VNB has the advantage of balancing sensitivitywidespread. These pipelines, and others with more

specialized purposes [GeneNest (26), Exquest (13), and specificity by use of optimizable parameters.
While the optimal window and probe size parametersand Gene2EST (22)], depend on EST assembly pro-

grams [d2 cluster (49), CLOBB (45), Phrap (18), were nearly the same for aldo, bcl2, and cyp2 gene
families, despite differences in overall sequence con-BLAT (30), CAP3 (28), MegaBLAST (70), etc.].

These assembly programs rely on many pair-wise servation, this may not be the case for all queries. For
example, smaller window and probe sizes might becomparisons that result in clusters of related ESTs.

However, the number of pair-wise comparisons more effective for an expression profile for very rare
transcripts. VNB identified more P450-specific ESTsneeded for a large database precludes regenerating

such EST clusters/assemblies whenever new informa- with smaller probe and window sizes (see Fig. 5) (al-
though the false positives increased as well). Usingtion is added. VNB, on the other hand, does not use

clustering programs and thus can use the most recent longer probes reduced false positives, as VNB identi-
fied no false positives with probe lengths greater thanpublicly available data to generate expression profiles

for each query in real time. Computing expression 25, although sensitivity was affected. The ability to
set the window size and probe length parameters sep-profiles in real time is particularly useful for profiling

novel or poorly characterized genes. In addition, un- arately allows the user to change the sensitivity and
specificity of the produced profile. However, the choicelike a preindexed database, which only offers a single

profile per gene, the user can generate multiple pro- of parameters also affects performance. Increasing
the number and length of the probes, by decreasingfiles of varying specificity and sensitivity for the

same gene. window size and increasing probe length, respec-
tively, will increase the runtime.In addition, preindexed databases often contain in-

accuracies due to the misidentification or failure to
distinguish among paralogs or alternative transcripts. Quantification of Gene Expression From dbEST
As much as 1.5–3% of ESTs are incorrectly incorpo-
rated into the wrong cluster (21,65) and this inaccu- The accurate annotation of library information at

CGAP is critical to the accuracy of expression pro-racy is even greater (30%) for ESTs derived from 5′-
UTRs (39), leading to many false positives and false files generated by VNB. CGAP lists EST library in-
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formation, which includes its tissue of origin (normal, when comparing two ESTs, although this can be
modified when needed. The claim that profiles fromcancerous, or cell line), its construction information

(whether it has been “normalized”), and the number normalized libraries are no different from those from
unmanipulated libraries is in contrast to the reportof ESTs that it contains. To generate the quantitative

expression profile, VNB only uses ESTs from librar- here (see Fig 8). The GBA server is another tool that
does in silico gene expression profiling (67). It identi-ies annotated as “nonnormalized,” whereas all ESTs

are used to generate the qualitative profile. CGAP fies coexpressed genes by utilizing UniGene EST
clusters to generate and statistically compare expres-correctly identified the “nonnormalized” libraries, as

demonstrated by VNB’s quantitative expression pro- sion profiles.
All of the above-mentioned tools generate gene ex-files match experimental results (see Fig. 9). In addi-

tion, whether or not profiles are from normalized li- pression profiles using dbEST. However, most do not
compare the specificity or sensitivity of the algorithmbraries clearly influences the expression profile.

Much higher expression levels were seen in profiles to any standards, nor do they compare the output to
direct experimental measurements, although some doderived from “nonnormalized” EST libraries, perhaps

because many ESTs were discarded during normal- compare results to literature values. Moreover, most
of these tools do not address issues of constructionization (see Fig. 8).

This ability to attain quantitative expression values of EST libraries in generating their profiles and none
have shown that quantitative profiles can result frombrings into question how many ESTs are required to

obtain reliable expression data. Profiles from VNB the data in dbEST. VNB addressed most of these is-
sues.show accurate expression levels for tissues that have

as few as 10 EST “hits.” For example, Figure 9 The algorithm (VNB) introduced here is an attrac-
tive alternative for generating gene expression pro-shows that reliable expression was obtained for both

aldoA and gapdh in liver, kidney, and brain. More- files from dbEST. It uses a completely different ap-
proach from EST clustering used by most otherover, accurate profiles are generated even for small

libraries or those with low expression levels (e.g., as pipelines. Compared to clustering programs, VNB
has increased sensitivity and specificity and generatesfew as 3–9 EST hits from spleen and testis), even

though these expression levels are less statistically profiles in real time using the latest data in dbEST.
Moreover, one unique aspect is its quantitative accu-significant.
racy, which has been validated experimentally. The
program has adjustable parameters, thus allowing ac-Other Pipelines
curate mining of EST data for both qualitative and
quantitative output by optimizing the tradeoff be-Other algorithms have been developed for gene ex-

pression profiling using dbEST. DigiNorthern uses tween sensitivity and specificity. In summary, VNB
generates quantitative expression profiles in real timeBLAST and appears to perform a validation test simi-

lar to the BackBLAST routine described here, which from single-gene queries, and may be especially use-
ful for studying novel or poorly characterized genescertainly improved specificity (64). GEPIS simply

uses BLAST to search the entire input sequence that may not be available in preconstructed gene indi-
ces and/or may require expert scientific input.against dbEST (68). They validate their results by

comparison with qPCR data, and only use nonmanip-
ulated EST libraries in generating the profile. Clearly,
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