
Efficient Clustering with Limited Distance Information

Konstantin Voevodski
Dept. of Computer Science

Boston University
Boston, MA 02215

Maria-Florina Balcan
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332

Heiko Röglin
Dept. of Quantitative Economics

Maastricht University
Maastricht, The Netherlands

Shang-Hua Teng
Computer Science Dept.

University of Southern California
Los Angeles, CA 90089

Yu Xia
Bioinformatics Program and Dept. of Chemistry

Boston University
Boston, MA 02215

Abstract

Given a point set S and an unknown metric d
on S, we study the problem of efficiently par-
titioning S into k clusters while querying few
distances between the points. In our model
we assume that we have access to one versus
all queries that given a point s ∈ S return
the distances between s and all other points.
We show that given a natural assumption
about the structure of the instance, we can
efficiently find an accurate clustering using
only O(k) distance queries. We use our al-
gorithm to cluster proteins by sequence sim-
ilarity. This setting nicely fits our model be-
cause we can use a fast sequence database
search program to query a sequence against
an entire dataset. We conduct an empirical
study that shows that even though we query
a small fraction of the distances between the
points, we produce clusterings that are close
to a desired clustering given by manual clas-
sification.

1 Introduction

Clustering from pairwise distance information is an
important problem in the analysis and exploration of
data. It has many variants and formulations and it
has been extensively studied in many different commu-
nities, and many different clustering algorithms have
been proposed.

Many application domains ranging from computer vi-
sion to biology have recently faced an explosion of
data, presenting several challenges to traditional clus-
tering techniques. In particular, computing the dis-

tances between all pairs of points, as required by tra-
ditional clustering algorithms, has become infeasible
in many application domains. As a consequence it
has become increasingly important to develop effec-
tive clustering algorithms that can operate with lim-
ited distance information.

In this work we initiate a study of clustering with
limited distance information; in particular we con-
sider clustering with a small number of one versus all
queries. We can imagine at least two different ways
to query distances between points. One way is to ask
for distances between pairs of points, and the other is
to ask for distances between one point and all other
points. Clearly, a one versus all query can be imple-
mented as |S| pairwise queries, but we draw a distinc-
tion between the two because the former is often sig-
nificantly faster in practice if the query is implemented
as a database search.

Our main motivating example for considering one ver-
sus all distance queries is sequence similarity search in
biology. A program such as BLAST [1] (Basic Local
Alignment Search Tool) is optimized to search a sin-
gle sequence against an entire database of sequences.
On the other hand, performing |S| pairwise sequence
alignments takes several orders of magnitude more
time, even if the pairwise alignment is very fast. The
disparity in runtime is due to the hashing that BLAST
uses to identify regions of similarity between the input
sequence and sequences in the database. The program
maintains a hash table of all words in the database
(substrings of a certain length), linking each word to
its locations. When a query is performed, BLAST con-
siders each word in the input sequence, and runs a lo-
cal sequence alignment in each of its locations in the
database. Therefore the program only performs a lim-
ited number of local sequence alignments, rather than

aligning the input sequence to each sequence in the
database. Of course, the downside is that we never
consider alignments between sequences that do not
share a word. However, in this case an alignment may
not be relevant anyway, and we can assign a distance of
infinity to the two sequences. Even though the search
performed by BLAST is heuristic, it has been shown
that protein sequence similarity identified by BLAST
is meaningful [4].

Motivated by such scenarios, in this paper we consider
the problem of clustering a dataset with an unknown
distance function, given only the capability to ask one
versus all distance queries. We design an efficient al-
gorithm for clustering accurately with a small number
of such queries. To formally analyze the correctness
of our algorithm we assume that the distance function
is a metric, and that our clustering problem satisfies
a natural approximation stability property regarding
the utility of the k-median objective function in clus-
tering the points. In particular, our analysis assumes
the (c, ε)-property of Balcan et al. [3]. For an objective
function Φ (such as k-median), the (c, ε)-property as-
sumes that any clustering that is a c-approximation of
Φ has error of at most ε. To define what we mean by
error we assume that there exists some unknown rel-
evant “target” clustering CT ; the error of a proposed
clustering C is then the fraction of misclassified points
under the optimal matching between the clusters in
CT and C.

Our first main contribution is designing an algorithm
that given the (c, ε)-property for the k-median objec-
tive finds a clustering that is very close to the target
by using only O(k) one versus all queries. In particu-
lar, we use the same assumption as Balcan et al. [3],
and we obtain the same performance guarantees as [3]
but by only using a very small number of one ver-
sus all queries. In addition to handling this more
difficult scenario, we also provide a much faster al-
gorithm. The algorithm of [3] can be implemented in
O(|S|3) time, while the one proposed here runs in time
O(|S|k log |S|).

We also use our algorithm to cluster proteins by se-
quence similarity, and compare our results to gold
standard manual classifications given in the Pfam
[6] and SCOP [8] databases. These classification
databases are used ubiquitously in biology to observe
evolutionary relationships between proteins and to find
close relatives of particular proteins. We find that
for one of these sources we obtain clusterings that
usually closely match the given classification, and for
the other the performance of our algorithm is com-
parable to that of the best known algorithms using
the full distance matrix. Both of these classification
databases have limited coverage, so a completely auto-

mated method such as ours can be useful in clustering
proteins that have yet to be classified. Moreover, our
method can cluster very large datasets because it is
efficient and does not require the full distance matrix
as input, which may be infeasible to obtain for a very
large dataset.

Related Work: A property that is related to (c, ε)
is ε-separability, introduced by Ostrovsky et al. [9]. A
clustering instance is ε-separated if the cost of the opti-
mal k-clustering is at most ε2 times the cost of the op-
timal clustering using k−1 clusters. The ε-separability
and (c, ε) properties are related: in the case when the
clusters are large the Ostrovsky et al. [9] condition im-
plies the Balcan et al. [3] condition (see [3]).

Ostrovsky et al. also present a sampling method for
choosing initial centers, which when followed by a sin-
gle Lloyd-type descent step gives a constant factor ap-
proximation of the k-means objective if the instance
is ε-separated. However, their sampling method needs
information about the full distance matrix because the
probability of picking two points as two cluster centers
is proportional to their squared distance. A very simi-
lar (independently proposed) strategy is used in [2] to
obtain an O(log k)-approximation of the k-means ob-
jective on arbitrary instances. This strategy can be im-
plemented with k one versus all distance queries. How-
ever, an O(log k)-approximation is not good enough for
our purposes.

Approximate clustering using sampling has been stud-
ied extensively in recent years (see, e.g., [7, 5]). The
methods proposed in these papers yield constant fac-
tor approximations to the k-median objective using
O(k) one versus all distance queries. However, as
the constant factor of these approximations is at least
2, the proposed sampling methods do not necessarily
yield clusterings close to the target clustering CT if
the (c, ε)-property holds only for some small constant
c < 2, which is the interesting case in our setting.

2 Preliminaries

Given a metric space M = (X, d) with point set X,
an unknown distance function d satisfying the trian-
gle inequality, and a set of points S ⊆ X, we would
like to find a k-clustering C that partitions the points
in S into k sets C1, C2, . . . Ck by using one versus all
distance queries.

In our analysis we assume that S satisfies the (c, ε)-
property of Balcan et al. [3] for the k-median objec-
tive function. The k-median objective is to minimize
Φ(C) =

∑k
i=1

∑
x∈Ci

d(x, ci), where ci is the median
of cluster Ci, which is the point y that minimizes∑

x∈Ci
d(x, y). Let OPTΦ = minC Φ(C), where the

minimum is over all k-clusterings of S, and denote
by C∗ = {C∗

1 , C∗
2 , . . . C∗

k} a clustering achieving this
value.

To formalize the (c, ε)-property we need to define a
notion of distance between two k-clusterings C =
{C1, C2, . . . Ck} and C ′ = {C ′

1, C
′
2, . . . C

′
k}. As in [3],

we define the distance between C and C ′ as the frac-
tion of points on which they disagree under the op-
timal matching of clusters in C to clusters in C ′:
dist(C,C ′) = minσ∈Sk

1
n

∑k
i=1 |Ci − C ′

σ(i)|, where Sk

is the set of bijections σ : [k] → [k]. Two clusterings C
and C ′ are ε-close if dist(C,C ′) < ε.

We assume that there exists some unknown relevant
“target” clustering CT and given a proposed cluster-
ing C we define the error of C with respect to CT as
dist(C,CT). Our goal is to find a clustering of low
error.

The (c, ε)-property is defined as follows.

Definition 1. We say that the instance (S, d) satis-
fies the (c, ε)-property for the k-median objective func-
tion with respect to the target clustering CT if any
clustering of S that approximates OPTΦ within a fac-
tor of c is ε-close to CT , i.e., Φ(C) ≤ c · OPTΦ ⇒
dist(C,CT) < ε.

In the analysis of the next section we denote by c∗i
the center point of C∗

i , and use OPT to refer to
the value of C∗ using the k-median objective, i.e.,
OPT = Φ(C∗). We define the weight of point x to
be the contribution of x to the k-median objective in
C∗: w(x) = mini d(x, c∗i). Similarly, we use w2(x) to
denote x’s distance to the second-closest cluster center
among {c∗1, c∗2, . . . , c∗k}. In addition, let w be the av-
erage weight of the points: w = 1

n

∑n
i=1 w(x) = OPT

n ,
where n is the cardinality of S.

3 Clustering With Limited Distance
Information

Algorithm 1 Landmark-Clustering(S, d, α, ε, k)
b = (1 + 17/α)εn;
q = 2b;
iter = 4k;
smin = b + 1;
n′ = n− b;
L = Landmark-Selection(q, iter);
C ′ = Expand-Landmarks (smin, n′, L);
Choose some landmark li from each cluster C ′

i;
for each x ∈ S do

Insert x into the cluster C ′′
j for j = argminid(x, li);

end for
return C ′′;

In this section we present a new algorithm that ac-
curately clusters a set of points assuming that the
clustering instance satisfies the (c, ε)-property for c =
1 + α, and the clusters in the target clustering CT are
not too small. The algorithm presented here is much
faster than the one given by Balcan et al., and does
not require all pairwise distances as input. Instead,
we only require O(k) one versus all distance queries to
achieve the same performance guarantee as in [3].

Our clustering algorithm is described in Algorithm 1.
We start by using the Landmark-Selection procedure
to select a set of 4k landmarks. This procedure repeat-
edly chooses uniformly at random one of the q furthest
points from the ones selected so far, for an appropri-
ate q. Our algorithm only uses the distances between
the selected landmarks and other points, so it requires
only 4k one versus all distance queries.

Algorithm 2 Landmark-Selection(q, iter)
Choose s∗ ∈ S uniformly at random;
L = {s∗};
for i = 1 to iter− 1 do

Let s1, ..., sn be an ordering of the points in S such
that minl∈L d(l, si) ≤ minl∈L d(l, si+1);
Choose s∗ ∈ {sn−q+1, ..., sn} uniformly at ran-
dom;
L = L ∪ {s∗};

end for
return L;

It is possible to implement each iteration of Landmark-
Selection in O(n) time: For each point we store the
minimum distance to the landmarks chosen so far,
which is updated in constant time when we add a new
landmark. To select a new landmark in each iteration,
we choose a random number i ∈ [n − q + 1, n] and
use a linear time selection algorithm to select the ith
furthest point as the next landmark.

Expand-Landmarks then expands a ball Bl around
each landmark l ∈ L chosen by Landmark-Selection.
We use the variable r to denote the radius of all the
balls: Bl = {s ∈ S | d(s, l) ≤ r}. The algorithm starts
with r = 0, and increments it until the balls satisfy
a property described below. For each Bl there are n
relevant values of r to try, each adding one more point
to Bl, which results in at most |L|n values to try in
total.

The algorithm maintains a graph GB = (VB , EB),
where vertices correspond to balls that have at least
smin points in them, and two vertices are connected by
an (undirected) edge if the corresponding balls over-
lap on any point: (vl1 , vl2) ∈ EB iff Bl1 ∩ Bl2 6= ∅. In
addition, we maintain the set of points in these balls

Clustered = {s ∈ S | ∃l : s ∈ Bl} and a list of the
connected components of GB , which we refer to as
Components(GB) = {Comp1, ...,Compm}.

In each iteration, after we expand one of the balls
by a single point, we update GB ,Components(GB),
and Clustered. If GB has exactly k components, and
|Clustered| ≥ n′, we terminate and report points in
balls that are part of the same component in GB as
distinct clusters. If this condition is never satisfied, we
report no-cluster. A sketch of the algorithm is given
below. We use (l∗, s∗) to refer to the next landmark-
point pair that is considered, corresponding to expand-
ing Bl∗ to include s∗.

Algorithm 3 Expand-Landmarks(smin, n′, L)
1: while ((l∗, s∗) = Expand-Ball()) != null do
2: r = d(l∗, s∗);
3: update GB , Components(GB), and Clustered
4: if |Components(GB)| = k and |Clustered| ≥ n′

then
5: return C = {C1, ..., Ck} where Ci = {s ∈

S | ∃l : s ∈ Bl and vl ∈ Compi}.
6: end if
7: end while
8: return no-cluster;

Using a min-heap to store all landmark-point pairs and
a disjoint-set data structure to keep track of the con-
nected components of GB , each iteration of the while
loop can be implemented in amortized time O(log n).
As the number of iterations is bounded by |L|n, this
gives a worst-case running time of O(|L|n log n).1

The last step of our algorithm takes the clustering C ′

returned by Expand-Landmarks and improves it: We
compute a set L′ that contains exactly one landmark
from each cluster C ′

i ∈ C ′ (any landmark is sufficient),
and assign each point x ∈ S to the cluster correspond-
ing to the closest landmark in L′.

The runtime of Landmark-Selection is O(kn), Expand-
Landmarks can be implemented in O(kn log n), and
the last part of the procedure takes O(kn) time, thus
the total runtime of the algorithm is O(kn log n).
Moreover, the algorithm only uses the distances be-
tween the selected landmarks and other points, so it
only uses O(k) one versus all distance queries.

We now present our main theoretical guarantee for Al-
gorithm 1.

Theorem 2. Given a metric space M = (X, d), where
d is unknown, and a set of points S, if the instance
(S, d) satisfies the (1 + α, ε)-property for the k-median

1A detailed description of this implementation is given
in the full version of this paper, which can be downloaded
from http://cs-people.bu.edu/kvodski/UAI10.pdf.

objective function and if each cluster in the target clus-
tering CT has size at least (4+51/α)εn, then with prob-
ability 1− exp(−Ω(k)) Landmark-Clustering outputs a
clustering that is ε-close to CT .

Before we prove the theorem, we will introduce some
notation and use an analysis similar to the one in [3]
to argue about the structure of the clustering instance.
Let ε∗ = dist(CT , C∗). By our assumption that the k-
median clustering of S satisfies the (1 + α, ε)-property
we have ε∗ < ε. Since each cluster in the target clus-
tering has at least (4+51/α)εn points, and the optimal
k-median clustering C∗ differs from the target cluster-
ing by ε∗n ≤ εn points, each cluster in C∗ must have
at least (3 + 51/α)εn points.

Let us define the critical distance dcrit = αw
17ε . We

call a point x good if both w(x) < dcrit and w2(x) −
w(x) ≥ 17dcrit, else x is called bad. In other words, the
good points are those points that are close to their own
cluster center and far from any other cluster center. In
addition, we will break up the good points into good
sets Xi, where Xi is the set of the good points in the
optimal cluster C∗

i . So each set Xi is the “core” of the
optimal cluster C∗

i .

Note that the distance between two points x, y ∈ Xi

satisfies d(x, y) ≤ d(x, c∗i) + d(c∗i , y) = w(x) + w(y) <
2dcrit. In addition, the distance between any two
points in different good sets is greater than 16dcrit.
To see this, consider a pair of points x ∈ Xi and
y ∈ Xj 6=i. The distance from x to y’s cluster cen-
ter c∗j is at least 17dcrit. By the triangle inequality,
d(x, y) ≥ d(x, c∗j)− d(y, c∗j) > 17dcrit − dcrit = 16dcrit.

It is proved in [3] that if the k-median instance (M,S)
satisfies the (1+α, ε)-property with respect to CT , and
each cluster in CT has size at least 2εn, then

1. less than (ε− ε∗)n points x ∈ S on which CT and
C∗ agree have w2(x)− w(x) < αw

ε .

2. at most 17εn/α points x ∈ S have w(x) ≥ αw
17ε .

The intuition is that if too many points on which CT

and C∗ agree are close enough to the second-closest
center among {c∗1, c∗2, . . . , c∗k}, then we can move them
to the clusters corresponding to those centers, produc-
ing a clustering that is far from CT , but whose ob-
jective value is close to OPT, violating the (1 + α, ε)-
property. The second part follows from the fact that∑

x∈S w(x) = OPT = wn.

Then using these facts and the definition of ε∗ it follows
that at most ε∗n+(ε−ε∗)n+17εn/α = εn+17εn/α =
(1 + 17/α)εn = b points are bad. Hence each |Xi| =
|C∗

i \B| ≥ (2 + 34/α)εn = 2b.

In the remainder of this section we prove that given
this structure of the clustering instance, Landmark-
Clustering finds an accurate clustering. We first show
that almost surely the set of landmarks returned by
Landmark-Selection has the property that each of the
cluster cores has a landmark near it. We then ar-
gue that Expand-Landmarks finds a partition C ′ that
clusters most of the points in each core correctly. We
conclude with the proof of the theorem, which argues
that the clustering returned by the last step of our
procedure is a further improved clustering that is very
close to C∗ and CT .

The Landmark-Clustering algorithm first uses
Landmark-Selection(q, iter) to choose a set of land-
mark points. The following lemma proves that if
q = 2b and iter = 4k almost surely the set of selected
landmarks has the property that there is a landmark
closer than 2dcrit to some point in each good set.

Lemma 3. Given L = Landmark-Selection (2b, 4k),
with probability 1 − exp(−Ω(k)) there is a landmark
closer than 2dcrit to some point in each good set.

Proof. Because there are at most b bad points and in
each iteration we uniformly at random choose one of
2b points, the probability that a good point is added
to L is at least 1/2 in each iteration. Using a Chernoff
bound we show that the probability that fewer than
k good points have been added to L after t iterations
is less than e−t(1− 2k

t)2/4 (Lemma 4). Therefore after
4k iterations k good points have been added to L with
probability 1 − e−Ω(k). Note that these good points
must be distinct because we cannot choose the same
point twice in the first n−2b iterations. There are two
possibilities regarding the first k good points added to
L: they are either selected from distinct good sets, or
at least two of them are selected from the same good
set.

If the former is true then the statement trivially holds.
If the latter is true, consider the first time that a sec-
ond point is chosen from the same good set Xi. Let
us call these two points x and y, and assume that y is
chosen after x. The distance between x and y must be
less than 2dcrit because they are in the same good set.
Therefore when y is chosen, minl∈L d(l, y) ≤ d(x, y) <
2dcrit. Moreover, y is chosen from {sn−2b+1, ..., sn},
where minl∈L d(l, si) ≤ minl∈L d(l, si+1). Therefore
when y is chosen, at least n − 2b + 1 points s ∈ S
(including y) satisfy minl∈L d(l, s) ≤ minl∈L d(l, y) <
2dcrit. Since each good set satisfies |Xi| ≥ 2b, it fol-
lows that there must be a landmark closer than 2dcrit

to some point in each good set.

Lemma 4. The probability that fewer than k good

points have been chosen as landmarks after t ≥ 2k iter-
ations of Landmark-Selection is less than e−t(1− 2k

t)2/4.

Proof. Let Xi be an indicator random variable defined
as follows: Xi = 1 if point chosen in iteration i is a
good point, and 0 otherwise. Let X =

∑t
i=1 Xi, and

µ be the expectation of X. In other words, X is the
number of good points chosen after t iterations of the
algorithm, and u is its expected value.

Because in each round we uniformly at random choose
one of 2b points and there are at most b bad points in
total, E[Xi] ≥ 1/2 and hence µ ≥ t/2. By the Chernoff
bound, for any δ > 0 Pr[X < (1− δ)µ] < e−µδ2/2.

If we set δ = 1− 2k
t , we have (1−δ)µ = (1−(1− 2k

t))µ ≥
(1− (1− 2k

t))t/2 = k. Assuming that t ≥ 2k, it follows
that Pr[X < k] ≤ Pr[X < (1 − δ)µ] < e−µδ2/2 =
e−µ(1− 2k

t)2/2 ≤ e−t/2(1− 2k
t)2/2.

The algorithm then uses the Expand-Landmarks pro-
cedure to find a k-clustering C ′. The following lemma
states that C ′ is an accurate clustering, and has an
additional property that is relevant for the last part of
the algorithm.

Lemma 5. Given a set of landmarks L chosen by
Landmark-Selection so that the condition in Lemma 3
is satisfied, Expand-Landmarks(b+1, n−b, L) returns a
k-clustering C ′ = {C ′

1, C
′
2, . . . C

′
k} in which each clus-

ter contains points from a distinct good set Xi. If
we let σ be a bijection mapping each good set Xi to
the cluster C ′

σ(i) containing points from Xi, the dis-
tance between c∗i and any landmark l in C ′

σ(i) satisfies
d(c∗i , l) < 5dcrit.

Proof. Lemma 6 argues that since the good sets Xi are
well-separated, for r < 4dcrit no ball of radius r can
overlap more than one Xi, and two balls that overlap
different Xi cannot share any points. Moreover, since
we only consider balls that have more than b points
in them, and the number of bad points is at most b,
each ball in GB must overlap some good set. Lemma 7
argues that since there is a landmark near each good
set, there is a value of r∗ < 4dcrit such that each Xi

is contained in some ball around a landmark of radius
r∗. We can use these facts to argue for the correctness
of the algorithm.

First we observe that for r = r∗, GB has exactly k
components and each good set Xi is contained within
a distinct component. Each ball in GB overlaps with
some Xi, and by Lemma 6, since r∗ < 4dcrit, we know
that each ball in GB overlaps with exactly one Xi.
From Lemma 6 we also know that balls that overlap
different Xi cannot share any points and are thus not
connected in GB . Therefore balls that overlap different

Xi will be in different components in GB . Moreover,
by Lemma 7 each Xi is contained in some ball of radius
r∗. For each good set Xi let us designate by Bi a ball
that contains all the points in Xi, which is in GB since
the size of each good set satisfies |Xi| > b. Any ball
in GB that overlaps Xi will be connected to Bi, and
will thus be in the same component as Bi. Therefore
for r = r∗, GB has exactly k components, one for each
good set Xi that contains all the points in Xi.

Since there are at least n − b good points that are
in some Xi, this means that for r = r∗ the number
of points that are in some ball in GB (which are in
Clustered) is at least n − b. Hence the condition in
line 4 of Expand-Landmarks will be satisfied and the
algorithm will terminate and return a k-clustering in
which each cluster contains points from a distinct good
set Xi.

Now let us suppose that we start with r = 0. Consider
the first value of r = r′ for which the condition in
line 4 is satisfied. At this point GB has exactly k
components and the number of points that are not in
these components is at most b. It must be the case that
r′ ≤ r∗ < 4dcrit because we know that the condition is
satisfied for r = r∗, and we are considering all relevant
values of r in ascending order. As before, each ball
in GB must overlap some good set Xi. Again using
Lemma 6 we argue that since r < 4dcrit, no ball can
overlap more than one Xi and two balls that overlap
different Xi cannot share any points. It follows that
each component of GB contains points from a single Xi

(so we cannot merge the good sets). Moreover, since
the size of each good set satisfies |Xi| > b, and there
are at most b points left out of GB , each component
must contain points from a distinct Xi (so we cannot
split the good sets). Thus we will return a k-clustering
in which each cluster contains points from a distinct
good set Xi.

To prove the second part of the statement, let σ be
a bijection matching each good set Xi to the cluster
C ′

σ(i) containing points from Xi. Clearly, C ′
σ(i) is made

up of points in balls of radius r < 4dcrit that overlap
Xi. Consider any such ball Bl around landmark l and
let s∗ denote any point on which Bl and Xi overlap. By
the triangle inequality, the distance between c∗i and l
satisfies d(c∗i , l) ≤ d(c∗i , s

∗)+d(s∗, l) < dcrit+r < 5dcrit.
Therefore the distance between c∗i and any landmark
l ∈ C ′

σ(i) satisfies d(c∗i , l) < 5dcrit.

Lemma 6. A ball of radius r < 4dcrit cannot contain
points from more than one good set Xi, and two balls
of radius r < 4dcrit that overlap different Xi cannot
share any points.

Proof. To prove the first part, consider a ball Bl of

radius r < 4dcrit around landmark l. In other words,
Bl = {s ∈ S | d(s, l) ≤ r}. If Bl overlaps more than
one good set, then it must have at least two points from
different good sets x ∈ Xi and y ∈ Xj . By the triangle
inequality it follows that d(x, y) ≤ d(x, l) + d(l, y) ≤
2r < 8dcrit. However, we know that d(x, y) > 16dcrit,
giving a contradiction.

To prove the second part, consider two balls Bl1 and
Bl2 of radius r < 4dcrit around landmarks l1 and l2.
In other words, Bl1 = {s ∈ S | d(s, l1) ≤ r}, and
Bl2 = {s ∈ S | d(s, l2) ≤ r}. Assume that they overlap
with different good sets Xi and Xj : Bl1 ∩ Xi 6= ∅
and Bl2 ∩ Xj 6= ∅. For the purpose of contradiction,
let’s assume that Bl1 and Bl2 share at least one point:
Bl1 ∩Bl2 6= ∅, and use s∗ to refer to this point. By the
triangle inequality, it follows that the distance between
any point x ∈ Bl1 and y ∈ Bl2 satisfies d(x, y) ≤
d(x, s∗) + d(s∗, y) ≤ [d(x, l1) + d(l1, s∗)] + [d(s∗, l2) +
d(l2, y)] ≤ 4r < 16dcrit.

Since Bl1 overlaps with Xi and Bl2 overlaps with Xj ,
it follows that there is a pair of points x ∈ Xi and
y ∈ Xj such that d(x, y) < 16dcrit, a contradiction.
Therefore if Bl1 and Bl2 overlap different good sets,
Bl1 ∩Bl2 = ∅.

Lemma 7. Given a set of landmarks L chosen by
Landmark-Selection so that the condition in Lemma 3
is satisfied, there is some value of r∗ < 4dcrit such that
each Xi is contained in some ball Bl around landmark
l ∈ L of radius r∗.

Proof. For each good set Xi choose a point si ∈ Xi

and a landmark li ∈ L that satisfy d(si, li) < 2dcrit.
The distance between li and each point x ∈ Xi satisfies
d(li, x) ≤ d(li, si) + d(si, x) < 2dcrit + 2dcrit = 4dcrit.

Consider r∗ = maxlimaxx∈Xi
d(li, x). Clearly, each

Xi is contained in a ball Bli of radius r∗ and r∗ <
4dcrit.

Lemma 8. Suppose the distance between c∗i and any
landmark l in C ′

σ(i) satisfies d(c∗i , l) < 5dcrit. Then
given point x ∈ C∗

i that satisfies w2(x) − w(x) ≥
17dcrit, for any l1 ∈ C ′

σ(i) and l2 ∈ C ′
σ(j 6=i) it must

be the case that d(x, l1) < d(x, l2).

Proof. We will show that d(x, l1) < w(x) + 5dcrit (1),
and d(x, l2) > w(x) + 12dcrit (2). This implies that
d(x, l1) < d(x, l2).

To prove (1), by the triangle inequality d(x, l1) ≤
d(x, c∗i) + d(c∗i , l1) = w(x) + d(c∗i , l1) < w(x) + 5dcrit.
To prove (2), by the triangle inequality d(x, c∗j) ≤
d(x, l2) + d(l2, c∗j). It follows that d(x, l2) ≥ d(x, c∗j)−
d(l2, c∗j). Since d(x, c∗j) ≥ w2(x) and d(l2, c∗j) < 5dcrit

we have
d(x, l2) > w2(x)− 5dcrit. (1)

Moreover, since w2(x)− w(x) ≥ 17dcrit we have

w2(x) ≥ 17dcrit + w(x). (2)

Combining Equations 1 and 2 it follows that d(x, l2) >
17dcri + w(x)− 5dcrit = w(x) + 12dcrit.

Proof of Theorem 2. Each cluster in the clustering
C ′ = {C ′

1, C
′
2, . . . C

′
k} output by Expand-Landmarks

contains points from a distinct good set Xi. This clus-
tering can exclude up to b points, all of which may be
good. Nonetheless, this means that C ′ may disagree
with C∗ on only the bad points and at most b good
points. The number of points that C ′ and C∗ disagree
on is therefore at most 2b = O(εn/α). Thus, C ′ is at
least O(ε/α)-close to C∗, and at least O(ε/α+ ε)-close
to CT .

Moreover, C ′ has an additional property that allows
us to find a clustering that is ε-close to CT . If we
use σ to denote a bijection mapping each good set Xi

to the cluster C ′
σ(i) containing points from Xi, any

landmark l ∈ C ′
σ(i) is closer than 5dcrit to c∗i . We can

use this observation to find all points that satisfy one
of the properties of the good points: points x such that
w2(x) − w(x) ≥ 17dcrit. Let us call these points the
detectable points. To clarify, the detectable points are
those points that are much closer to their own cluster
center than to any other cluster center in C∗, and the
good points are a subset of the detectable points that
are also very close to their own cluster center.

To find the detectable points using C ′, we choose
some landmark li from each C ′

i. For each point
x ∈ S, we then insert x into the cluster C ′′

j for j =
argminid(x, li). Lemma 8 argues that each detectable
point in C∗

i is closer to every landmark in C ′
σ(i) than

to any landmark in C ′
σ(j 6=i). It follows that C ′′ and

C∗ agree on all the detectable points. Since there are
fewer than (ε− ε∗)n points on which CT and C∗ agree
that are not detectable, it follows that dist(C ′′, CT) <
(ε− ε∗) + dist(CT , C∗) = (ε− ε∗) + ε∗ = ε.

4 Empirical Study

We use our Landmark Clustering algorithm to clus-
ter proteins using sequence similarity. As mentioned
in the Introduction, one versus all distance queries
are particularly relevant in this setting because of se-
quence database search programs such as BLAST [1]
(Basic Local Alignment Search Tool). BLAST aligns
the queried sequence to sequences in the database, and
produces a “bit score” for each alignment, which is
a measure of its quality (we invert the bit score to

make it a distance). However, BLAST does not con-
sider alignments with some of the sequences in the
database, in which case we assign distances of infinity
to the corresponding sequences. We observe that if
we define distances in this manner they almost form a
metric in practice: when we draw random triplets of
sequences and check the distances between them the
triangle inequality is almost always satisfied. More-
over, BLAST is very successful at detecting sequence
homology in large sequence databases, therefore it is
plausible that clustering using these distances satisfies
the (c, ε)-property for some relevant clustering CT .

We perform experiments on datasets obtained from
two classification databases: Pfam [6] (version 24.0,
October 2009) and SCOP [8] (version 1.75, June 2009).
Both of these sources classify proteins by their evolu-
tionary relatedness, therefore we can use their classi-
fications as a ground truth to evaluate the clusterings
produced by our algorithm and other methods.

Pfam classifies proteins using hidden Markov models
(HMMs) that represent multiple sequence alignments.
There are two levels in the Pfam classification hier-
archy: family and clan. In our clustering experiments
we compare with a classification at the family level be-
cause the relationships at the clan level are less likely
to be discerned with sequence alignment. In each ex-
periment we randomly select several large families (of
size between 1000 and 10000) from Pfam-A (the man-
ually curated part of the classification), retrieve the
sequences of the proteins in these families, and use our
Landmark-Clustering algorithm to cluster the dataset.

SCOP groups proteins on the basis of their 3D struc-
tures, so it only classifies proteins whose structure
is known. Thus the datasets from SCOP are much
smaller in size. The SCOP classification is also hierar-
chical: proteins are grouped by class, fold, superfam-
ily, and family. We consider the classification at the
superfamily level because this seems most appropri-
ate given that we are only using sequence information.
As with the Pfam data, in each experiment we create
a dataset by randomly choosing several superfamilies
(of size between 20 and 200), retrieve the sequences
of the corresponding proteins, and use our Landmark-
Clustering algorithm to cluster the dataset.

Once we cluster a particular dataset, we compare the
clustering to the manual classification using the dis-
tance measure from the theoretical part of our work.
To find the fraction of misclassified points under the
optimal matching of clusters in C to clusters in C ′ we
solve a minimum weight bipartite matching problem
where the cost of matching Ci to C ′

σ(i) is |Ci−C ′
σ(i)|/n.

4.1 Choice of Parameters

To run Landmark-Clustering, we set k using the num-
ber of clusters in the ground truth clustering. For
each Pfam dataset we use 40k landmarks/queries, and
for each SCOP dataset we use 30k landmarks/queries.
In addition, our algorithm uses three parameters
(q, smin, n′) whose value is set in the proof based on
α and ε, assuming that the clustering instance satis-
fies the (1+α, ε)-property. In practice we must choose
some value for each parameter. In our experiments we
set them as a function of the number of points in the
dataset (n), and the average size of the ground truth
clusters (µ). We set q = 2µ, smin = 0.05µ/0.1µ for
Pfam/SCOP datasets, and n′ = 0.5n. Since the se-
lection of landmarks is randomized, for each dataset
we perform several clusterings, compare each to the
ground truth, and report the median quality.

Landmark-Clustering is most sensitive to the smin pa-
rameter, and will not report a clustering if smin is too
small or too large. We recommend trying several rea-
sonable values of smin, in increasing or decreasing or-
der, until you get a clustering and none of the clusters
are too large. If you get a clustering where one of the
clusters is very large, this likely means that several
ground truth clusters have been merged. This may
happen because smin is too small causing balls of out-
liers to connect different cluster cores, or smin is too
large causing balls in different cluster cores to overlap.

The algorithm is less sensitive to the n′ parameter.
However, if you set n′ too large some ground truth
clusters may be merged, so we recommend using a
smaller value (0.5n ≤ n′ ≤ 0.7n) because all of the
points are still clustered during the last step. Again,
for some values of n′ the algorithm may not output a
clustering, or output a clustering where some of the
clusters are too large. Our algorithm is least sensitive
to the q parameter. Using more landmarks (if you can
afford it) can make up for a poor choice of q.

4.2 Results

Figure 1 shows the results of our experiments on the
Pfam datasets. One can see that for most of the
datasets (other than datasets 7 and 9) we find a clus-
tering that is almost identical to the ground truth.
These datasets are very large, so as a benchmark for
comparison we can only consider algorithms that use
a comparable amount of distance information (since
we do not have the full distance matrix). A natural
choice is the following algorithm: randomly choose a
set of landmarks L, |L| = d; embed each point in a
d-dimensional space using distances to L; use k-means
clustering in this space.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7 8 9 10

fr
ac

ti
on

 m
is

m
at

ch
ed

 p
oi

nt
s

dataset

Figure 1: Comparing the performance of k-means in the
embedded space (blue) and Landmark-Clustering (red) on
10 datasets from Pfam. Datasets 1-10 are created by ran-
domly choosing 8 families from Pfam of size s, 1000 ≤ s ≤
10000.

Notice that this procedure uses exactly d one versus
all distance queries, so we can set d equal to the num-
ber of queries used by our algorithm. We expect this
procedure to work well, and indeed if you look at Fig-
ure 1 you can see that it finds reasonable clusterings.
Still, the clusterings reported by this procedure do not
match the Pfam classification exactly, showing that
finding the exact Pfam partition is not trivial.

Figure 2 shows the results of our experiments on the
SCOP datasets. These results are not as good, which
is likely because the SCOP classification at the super-
family level is based on biochemical and structural ev-
idence in addition to sequence evidence. By contrast,
the Pfam classification is based entirely on sequence in-
formation. Still, because the SCOP datasets are much
smaller, we can compare our algorithm to methods
that require distances between all the points. In par-
ticular, Paccanaro et al. showed that spectral cluster-
ing using sequence data works well when applied to the
proteins in SCOP [10]. Thus we use the exact method
described in [10] as a benchmark for comparison on the
SCOP datasets. Moreover, other than clustering ran-
domly generated datasets from SCOP, we also consider
the two main examples from [10], which are labeled A
and B in the figure. From Figure 2 we can see that the
performance of Landmark-Clustering is comparable to
that of the spectral method, which is very good con-
sidering that the algorithm used by Paccanaro et al.
significantly outperforms other clustering algorithms
on this data [10]. Moreover, the spectral clustering al-
gorithm requires the full distance matrix as input, and
takes much longer to run.

0

0.1

0.2

0.3

0.4

0.5

0.6

A B 1 2 3 4 5 6 7 8

fr
ac

ti
on

 m
is

m
at

ch
ed

 p
oi

nt
s

dataset

Figure 2: Comparing the performance of spectral cluster-
ing (blue) and Landmark-Clustering (red) on 10 datasets
from SCOP. Datasets A and B are the two main exam-
ples from [10], the other datasets (1-8) are created by
randomly choosing 8 superfamilies from SCOP of size s,
20 ≤ s ≤ 200.

5 Conclusion and Open Questions

In this work we presented a new algorithm for cluster-
ing large datasets with limited distance information.
As opposed to previous settings, our goal was not to
approximate some objective function like the k-median
objective, but to find clusterings close to the ground
truth. We proved that our algorithm yields accurate
clusterings with only a small number of one versus all
distance queries, given a natural assumption about the
structure of the clustering instance. This assumption
has been previously analyzed in [3], but in the full dis-
tance information setting. By contrast, our algorithm
uses only a small number of queries, it is much faster,
and it has the same formal performance guarantees as
the one introduced in [3].

To demonstrate the practical use of our algorithm, we
clustered protein sequences using a sequence database
search program as the one versus all query. We com-
pared our results to gold standard manual classifi-
cations of protein evolutionary relatedness given in
Pfam [6] and SCOP [8]. We find that our clusterings
are comparable in accuracy to the classification given
in Pfam. For SCOP our clusterings are as accurate as
state of the art methods, which take longer to run and
require the full distance matrix as input.

Our main theoretical guarantee assumes large target
clusters. It would be interesting to design a provably
correct algorithm for the case of small clusters as well.

Acknowledgements

The authors would like to thank the reviewers for con-
structive feedback that greatly helped to improve the
implementation of the algorithm.

Konstantin Voevodski was supported by an IGERT
Fellowship through NSF grant DGE-0221680 awarded
to the ACES Training Program at BU Center for Com-
putational Science. Maria Florina Balcan was sup-
ported in part by NSF grant CCF-0953192, by ONR
grant N00014-09-1-0751 and AFOSR grant FA9550-
09-1-0538. Heiko Röglin was supported by a Veni
grant from the Netherlands Organisation for Scientific
Research. Shang-Hua Teng was supported in part by
NSF grant CCR-0635102.

References

[1] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and
D.J. Lipman. Basic local alignment search tool. J.
Mol. Biol., 215(3):403–410, 1990.

[2] D. Arthur and S. Vassilvitskii. k-means++: the ad-
vantages of careful seeding. In Proc. of 18th ACM-
SIAM Symp. on Discrete Algorithms (SODA), 2007.

[3] M. F. Balcan, A. Blum, and A. Gupta. Approximate
clustering without the approximation. In Proc. of 20th
ACM-SIAM Symp. on Discrete Algorithms (SODA),
2009.

[4] S.E. Brenner, C. Chothia, and T.J. Hubbard. Assess-
ing sequence comparison methods with reliable struc-
turally identified distant evolutionary relationships.
Proc. Natl. Acad. Sci. U S A, 95(11):6073–6078, 1998.

[5] A. Czumaj and C. Sohler. Sublinear-time approxima-
tion algorithms for clustering via random sampling.
Random Struct. Algorithms, 30(1-2):226–256, 2007.

[6] R.D. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger,
J.E. Pollington, O.L. Gavin, P. Gunesekaran,
G. Ceric, K. Forslund, L. Holm, E.L. Sonnhammer,
S.R. Eddy, and A. Bateman. The pfam protein fami-
lies database. Nucleic Acids Res., 38:D211–222, 2010.

[7] N. Mishra, D. Oblinger, and L Pitt. Sublinear time
approximate clustering. In Proc. of 12th ACM-SIAM
Symp. on Discrete Algorithms (SODA), 2001.

[8] A.G. Murzin, S. E. Brenner, T. Hubbard, and
C. Chothia. Scop: a structural classification of pro-
teins database for the investigation of sequences and
structures. J. Mol. Biol., 247:536–540, 1995.

[9] R. Ostrovsky, Y. Rabani, L. J. Schulman, and
C. Swamy. The effectiveness of lloyd-type methods for
the k-means problem. In Proc. of 47th IEEE Symp.
on Foundations of Computer Science (FOCS), 2006.

[10] A. Paccanaro, J. A. Casbon, and M. A. S. Saqi. Spec-
tral clustering of protein sequences. Nucleic Acids
Res., 34(5):1571–1580, 2006.

